Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Eur J Hum Genet ; 32(1): 91-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37016017

RESUMEN

Using genealogy to study the demographic history of a population makes it possible to overcome the models and assumptions often used in population genetics. The Quebec founder population is one of the few populations in the world having access to the complete genealogy of the last 400 years. The goal of this study is to follow the evolution of the Quebec population structure over time from the beginning of European colonization until the present day. To do so, we calculated the kinship coefficients of all ancestors' pairs in the ascending genealogy of 665 subjects from eight regional and ethnocultural groups per 25-year period. We show that the Quebec population structure appeared progressively in the St. Lawrence valley as early as 1750 with the distinction of the Saguenay and Gaspesian groups. At that time, the ancestors of two groups, the Sagueneans and the Acadians from the Gaspé Peninsula, experienced a marked increase in kinship and inbreeding levels which have shaped the structure and led to the contemporary population structure. Interestingly, this structure arose before the colonization of the Saguenay region and at the very beginning of the Gaspé Peninsula settlement. The resulting regional founder effects in these groups led to differences in the present-day identity-by-descent sharing, the Gaspé and North Shore groups sharing more large segments and the Sagueneans more short segments. This is also reflected by the distribution of the number of most recent common ancestors at different generations and their genetic contribution to the studied subjects.


Asunto(s)
Familia , Genética de Población , Humanos , Quebec/epidemiología , Linaje , Efecto Fundador , Estructuras Genéticas
2.
PLoS One ; 18(9): e0291935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37756314

RESUMEN

The discovery of new variants has leveled off in recent years in epilepsy studies, despite the use of very large cohorts. Consequently, most of the heritability is still unexplained. Rare non-coding variants have been largely ignored in studies on epilepsy, although non-coding single nucleotide variants can have a significant impact on gene expression. We had access to whole genome sequencing (WGS) from 247 epilepsy patients and 377 controls. To assess the functional impact of non-coding variants, ExPecto, a deep learning algorithm was used to predict expression change in brain tissues. We compared the burden of rare non-coding deleterious variants between cases and controls. Rare non-coding highly deleterious variants were significantly enriched in Genetic Generalized Epilepsy (GGE), but not in Non-Acquired Focal Epilepsy (NAFE) or all epilepsy cases when compared with controls. In this study we showed that rare non-coding deleterious variants are associated with epilepsy, specifically with GGE. Larger WGS epilepsy cohort will be needed to investigate those effects at a greater resolution. Nevertheless, we demonstrated the importance of studying non-coding regions in epilepsy, a disease where new discoveries are scarce.


Asunto(s)
Epilepsias Parciales , Epilepsia Generalizada , Epilepsia , Humanos , Epilepsia/genética , Epilepsia Generalizada/genética , Algoritmos , Secuenciación Completa del Genoma
3.
Ann Clin Transl Neurol ; 9(7): 1050-1058, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35678011

RESUMEN

OBJECTIVE: Microdeletions are associated with different forms of epilepsy but show incomplete penetrance, which is not well understood. We aimed to assess whether unmasked variants or double CNVs could explain incomplete penetrance. METHODS: We analyzed copy number variants (CNVs) in 603 patients with four different subgroups of epilepsy and 945 controls. CNVs were called from genotypes and validated on whole-genome (WGS) or whole-exome sequences (WES). CNV burden difference between patients and controls was obtained by fitting a logistic regression. CNV burden was assessed for small and large (>1 Mb) deletions and duplications and for deletions overlapping different gene sets. RESULTS: Large deletions were enriched in genetic generalized epilepsies (GGE) compared to controls. We also found enrichment of deletions in epilepsy genes and hotspots for GGE. We did not find truncating or functional variants that could have been unmasked by the deletions. We observed a double CNV hit in two patients. One patient also carried a de novo deletion in the 22q11.2 hotspot. INTERPRETATION: We could corroborate previous findings of an enrichment of large microdeletions and deletions in epilepsy genes in GGE. We could also replicate that microdeletions show incomplete penetrance. However, we could not validate the hypothesis of unmasked variants nor the hypothesis of double CNVs to explain the incomplete penetrance. We found a de novo CNV on 22q11.2 that could be of interest. We also observed GGE families carrying a deletion on 15q13.3 hotspot that could be investigated in the Quebec founder population.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Variaciones en el Número de Copia de ADN/genética , Epilepsia/genética , Epilepsia Generalizada/genética , Exoma , Humanos , Secuenciación del Exoma
4.
EBioMedicine ; 81: 104098, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35679801

RESUMEN

BACKGROUND: The developmental and epileptic encephalopathies (DEEs) are the most severe group of epilepsies which co-present with developmental delay and intellectual disability (ID). DEEs usually occur in people without a family history of epilepsy and have emerged as primarily monogenic, with damaging rare mutations found in 50% of patients. Little is known about the genetic architecture of patients with DEEs in whom no pathogenic variant is identified. Polygenic risk scoring (PRS) is a method that measures a person's common genetic burden for a trait or condition. Here, we used PRS to test whether genetic burden for epilepsy is relevant in individuals with DEEs, and other forms of epilepsy with ID. METHODS: Genetic data on 2,759 cases with DEEs, or epilepsy with ID presumed to have a monogenic basis, and 447,760 population-matched controls were analysed. We compared PRS for 'all epilepsy', 'focal epilepsy', and 'genetic generalised epilepsy' (GGE) between cases and controls. We performed pairwise comparisons between cases stratified for identifiable rare deleterious genetic variants and controls. FINDINGS: Cases of presumed monogenic severe epilepsy had an increased PRS for 'all epilepsy' (p<0.0001), 'focal epilepsy' (p<0.0001), and 'GGE' (p=0.0002) relative to controls, which explain between 0.08% and 3.3% of phenotypic variance. PRS was increased in cases both with and without an identified deleterious variant of major effect, and there was no significant difference in PRS between the two groups. INTERPRETATION: We provide evidence that common genetic variation contributes to the aetiology of DEEs and other forms of epilepsy with ID, even when there is a known pathogenic variant of major effect. These results provide insight into the genetic underpinnings of the severe epilepsies and warrant a shift in our understanding of the aetiology of the DEEs as complex, rather than monogenic, disorders. FUNDING: Science foundation Ireland, Human Genome Research Institute; National Heart, Lung, and Blood Institute; German Research Foundation.


Asunto(s)
Epilepsia Generalizada , Discapacidad Intelectual , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Variación Genética , Humanos , Herencia Multifactorial , Mutación , Fenotipo
5.
Ann Clin Transl Neurol ; 8(7): 1376-1387, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34018700

RESUMEN

OBJECTIVE: Resistance to antiseizure medications (ASMs) is one of the major concerns in the treatment of epilepsy. Despite the increasing number of ASMs available, the proportion of individuals with drug-resistant epilepsy remains unchanged. In this study, we aimed to investigate the role of rare genetic variants in ASM resistance. METHODS: We performed exome sequencing of 1,128 individuals with non-familial non-acquired focal epilepsy (NAFE) (762 non-responders, 366 responders) and were provided with 1,734 healthy controls. We undertook replication in a cohort of 350 individuals with NAFE (165 non-responders, 185 responders). We performed gene-based and gene-set-based kernel association tests to investigate potential enrichment of rare variants in relation to drug response status and to risk for NAFE. RESULTS: We found no gene or gene set that reached genome-wide significance. Yet, we identified several prospective candidate genes - among them DEPDC5, which showed a potential association with resistance to ASMs. We found some evidence for an enrichment of truncating variants in dominant familial NAFE genes in our cohort of non-familial NAFE and in association with drug-resistant NAFE. INTERPRETATION: Our study identifies potential candidate genes for ASM resistance. Our results corroborate the role of rare variants for non-familial NAFE and imply their involvement in drug-resistant epilepsy. Future large-scale genetic research studies are needed to substantiate these findings.


Asunto(s)
Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/genética , Secuenciación del Exoma/métodos , Estudios de Asociación Genética/métodos , Variación Genética/genética , Polimorfismo de Nucleótido Simple/genética , Estudios de Cohortes , Femenino , Humanos , Masculino
6.
PLoS Genet ; 16(5): e1008619, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32369493

RESUMEN

Coalescent simulations are widely used to examine the effects of evolution and demographic history on the genetic makeup of populations. Thanks to recent progress in algorithms and data structures, simulators such as the widely-used msprime now provide genome-wide simulations for millions of individuals. However, this software relies on classic coalescent theory and its assumptions that sample sizes are small and that the region being simulated is short. Here we show that coalescent simulations of long regions of the genome exhibit large biases in identity-by-descent (IBD), long-range linkage disequilibrium (LD), and ancestry patterns, particularly when the sample size is large. We present a Wright-Fisher extension to msprime, and show that it produces more realistic distributions of IBD, LD, and ancestry proportions, while also addressing more subtle biases of the coalescent. Further, these extensions are more computationally efficient than state-of-the-art coalescent simulations when simulating long regions, including whole-genome data. For shorter regions, efficiency can be maintained via a hybrid model which simulates the recent past under the Wright-Fisher model and uses coalescent simulations in the distant past.


Asunto(s)
Algoritmos , Secuencia de Bases/fisiología , Genética de Población/métodos , Estudio de Asociación del Genoma Completo/métodos , Modelos Genéticos , Estudios de Cohortes , Simulación por Computador , Evolución Molecular , Genoma/genética , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Humanos , Desequilibrio de Ligamiento , Recombinación Genética/fisiología , Tamaño de la Muestra
7.
Neurol Genet ; 6(3): e416, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32337343

RESUMEN

OBJECTIVE: Polygenic risk scores (PRSs) are used to quantify the cumulative effects of a number of genetic variants, which may individually have a very small effect on susceptibility to a disease; we used PRSs to better understand the genetic contribution to common epilepsy and its subtypes. METHODS: We first replicated previous single associations using 373 unrelated patients. We then calculated PRSs in the same French Canadian patients with epilepsy divided into 7 epilepsy subtypes and population-based controls. We fitted a logistic mixed model to calculate the variance explained by the PRS using pseudo-R2 statistics. RESULTS: We show that the PRS explains more of the variance in idiopathic generalized epilepsy than in patients with nonacquired focal epilepsy. We also demonstrate that the variance explained is different within each epilepsy subtype. CONCLUSIONS: Globally, we support the notion that PRSs provide a reliable measure to rightfully estimate the contribution of genetic factors to the pathophysiologic mechanism of epilepsies, but further studies are needed on PRSs before they can be used clinically.

8.
Epilepsia ; 61(4): 657-666, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32141622

RESUMEN

OBJECTIVE: Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified. We aimed to identify the role of rare genetic variants in drug resistance for three common ASMs: levetiracetam (LEV), lamotrigine (LTG), and valproic acid (VPA). METHODS: A cohort of 1622 individuals of European descent with epilepsy was deeply phenotyped and underwent whole exome sequencing (WES), comprising 575 taking LEV, 826 LTG, and 782 VPA. We performed gene- and gene set-based collapsing analyses comparing responders and nonresponders to the three drugs to determine the burden of different categories of rare genetic variants. RESULTS: We observed a marginally significant enrichment of rare missense, truncating, and splice region variants in individuals who were resistant to VPA compared to VPA responders for genes involved in VPA pharmacokinetics. We also found a borderline significant enrichment of truncating and splice region variants in the synaptic vesicle glycoprotein (SV2) gene family in nonresponders compared to responders to LEV. We did not see any significant enrichment using a gene-based approach. SIGNIFICANCE: In our pharmacogenetic study, we identified a slightly increased burden of damaging variants in gene groups related to drug kinetics or targeting in individuals presenting with drug resistance to VPA or LEV. Such variants could thus determine a genetic contribution to drug resistance.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Resistencia a Medicamentos/genética , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Variantes Farmacogenómicas/genética , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Lamotrigina/uso terapéutico , Levetiracetam/uso terapéutico , Masculino , Ácido Valproico/uso terapéutico
9.
Am J Phys Anthropol ; 171(4): 645-658, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32064591

RESUMEN

OBJECTIVES: We describe a method to identify human remains excavated from unmarked graves in historical Québec cemeteries by combining parental-lineage genetic markers with the whole-population genealogy of Québec contained in the BALSAC database. MATERIALS AND METHODS: The remains of six men were exhumed from four historical cemeteries in the province of Québec, Canada. DNA was extracted from the remains and genotyped to reveal their mitochondrial and Y-chromosome haplotypes, which were compared to a collection of haplotypes of genealogically-anchored modern volunteers. Maternal and paternal genealogies were searched in the BALSAC genealogical record for parental couples matching the mitochondrial and the Y-chromosome haplotypic signatures, to identify candidate sons from whom the remains could have originated. RESULTS: Analysis of the matching genealogies identified the parents of one man inhumed in the cemetery of the investigated parish during its operating time. The candidate individual died in 1833 at the age of 58, a plausible age at death in light of osteological analysis of the remains. DISCUSSION: This study demonstrates the promising potential of coupling genetic information from living individuals to genealogical data in BALSAC to identify historical human remains. If genetic coverage is increased, the genealogical information in BALSAC could enable the identification of 87% of the men (n = 178,435) married in Québec before 1850, with high discriminatory power in most cases since >75% of the parental couples have unique biparental signatures in most regions. Genotyping and identifying Québec's historical human remains are a key to reconstructing the genomes of the founders of Québec and reinhuming archeological remains with a marked grave.


Asunto(s)
Antropología Física/métodos , Marcadores Genéticos , Herencia Materna , Herencia Paterna , Adulto , Restos Mortales , Humanos , Masculino , Persona de Mediana Edad , Quebec , Adulto Joven
10.
Am J Hum Genet ; 103(6): 893-906, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30526866

RESUMEN

Learning the transmission history of alleles through a family or population plays an important role in evolutionary, demographic, and medical genetic studies. Most classical models of population genetics have attempted to do so under the assumption that the genealogy of a population is unavailable and that its idiosyncrasies can be described by a small number of parameters describing population size and mate choice dynamics. Large genetic samples have increased sensitivity to such modeling assumptions, and large-scale genealogical datasets become a useful tool to investigate realistic genealogies. However, analyses in such large datasets are often intractable using conventional methods. We present an efficient method to infer transmission paths of rare alleles through population-scale genealogies. Based on backward-time Monte Carlo simulations of genetic inheritance, we use an importance sampling scheme to dramatically speed up convergence. The approach can take advantage of available genotypes of subsets of individuals in the genealogy including haplotype structure as well as information about the mode of inheritance and general prevalence of a mutation or disease in the population. Using a high-quality genealogical dataset of more than three million married individuals in the Quebec founder population, we apply the method to reconstruct the transmission history of chronic atrial and intestinal dysrhythmia (CAID), a rare recessive disease. We identify the most likely early carriers of the mutation and geographically map the expected carrier rate in the present-day French-Canadian population of Quebec.


Asunto(s)
Grupos de Población/genética , Enfermedades Raras/genética , Alelos , Evolución Biológica , Bases de Datos Genéticas , Femenino , Genética de Población/métodos , Haplotipos/genética , Humanos , Masculino , Mutación/genética , Linaje , Quebec , Testamentos
11.
Curr Opin Genet Dev ; 53: 140-147, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30366252

RESUMEN

Evolutionary, biological, and demographic processes together shape observed variation in populations. Understanding how these processes influence variation allows us to infer past demography and the nature of selection in populations. Forward in time models such as the diffusion approximation provide a powerful tool for performing inference based on the distribution of allele frequencies. Here, we discuss recent computational developments and their application to reconstructing human demographic history. Using whole-genome sequence data for 797 French Canadian individuals, we assess the neutrality of synonymous variants and show that selection can bias inferred demography, mutation rates, and distributions of fitness effects. We argue that the simple evolutionary models investigated by Kimura and Ohta still provide important insight into modern genetic research.


Asunto(s)
Evolución Molecular , Genética de Población , Genómica , Selección Genética/genética , Canadá/epidemiología , Demografía , Frecuencia de los Genes/genética , Humanos , Modelos Genéticos , Tasa de Mutación , Mutación Silenciosa/genética , Secuenciación Completa del Genoma
12.
Nat Ecol Evol ; 1(9): 1400-1406, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29046555

RESUMEN

According to evolutionary theory, mitochondria could be poisoned gifts that mothers transmit to their sons. This is because mutations harmful to males are expected to accumulate in the mitochondrial genome, the so-called 'mother's curse'. However, the contribution of the mother's curse to the mutation load in nature remains largely unknown and hard to predict, because compensatory mechanisms could impede the spread of deleterious mitochondria. Here we provide evidence for the mother's curse in action over 290 years in a human population. We studied a mutation causing Leber's hereditary optical neuropathy, a disease with male-biased prevalence and which has long been suspected to be maintained in populations by the mother's curse. Male carriers showed a low fitness relative to non-carriers and to females, mostly explained by their high rate of infant mortality. Despite poor male fitness, selection analysis predicted a slight (albeit non-significant) increase in frequency, which sharply contrasts with the 35.5% per-generation decrease predicted if mitochondrial DNA transmission had been through males instead of females. Our results are therefore even suggestive of positive selection through the female line that may exacerbate effects of the mother's curse. This study supports a contribution of the mother's curse to the reduction of male lifespan, uncovering a large fitness effect associated with a single mitochondrial variant.


Asunto(s)
ADN Mitocondrial/genética , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Selección Genética , Femenino , Humanos , Masculino , Quebec , Factores Sexuales
13.
BMC Bioinformatics ; 16: 160, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25971991

RESUMEN

BACKGROUND: Founder populations have an important role in the study of genetic diseases. Access to detailed genealogical records is often one of their advantages. These genealogical data provide unique information for researchers in evolutionary and population genetics, demography and genetic epidemiology. However, analyzing large genealogical datasets requires specialized methods and software. The GENLIB software was developed to study the large genealogies of the French Canadian population of Quebec, Canada. These genealogies are accessible through the BALSAC database, which contains over 3 million records covering the whole province of Quebec over four centuries. Using this resource, extended pedigrees of up to 17 generations can be constructed from a sample of present-day individuals. RESULTS: We have extended and implemented GENLIB as a package in the R environment for statistical computing and graphics, thus allowing optimal flexibility for users. The GENLIB package includes basic functions to manage genealogical data allowing, for example, extraction of a part of a genealogy or selection of specific individuals. There are also many functions providing information to describe the size and complexity of genealogies as well as functions to compute standard measures such as kinship, inbreeding and genetic contribution. GENLIB also includes functions for gene-dropping simulations. The goal of this paper is to present the full functionalities of GENLIB. We used a sample of 140 individuals from the province of Quebec (Canada) to demonstrate GENLIB's functions. Ascending genealogies for these individuals were reconstructed using BALSAC, yielding a large pedigree of 41,523 individuals. Using GENLIB's functions, we provide a detailed description of these genealogical data in terms of completeness, genetic contribution of founders, relatedness, inbreeding and the overall complexity of the genealogical tree. We also present gene-dropping simulations based on the whole genealogy to investigate identical-by-descent sharing of alleles and chromosomal segments of different lengths and estimate probabilities of identical-by-descent sharing. CONCLUSIONS: The R package GENLIB provides a user friendly and flexible environment to analyze extensive genealogical data, allowing an efficient and easy integration of different types of data, analytical methods and additional developments and making this tool ideal for genealogical analysis.


Asunto(s)
Evolución Biológica , Genealogía y Heráldica , Genética de Población/métodos , Programas Informáticos , Alelos , Bases de Datos Factuales , Demografía , Humanos , Epidemiología Molecular , Linaje , Grupos de Población , Quebec/epidemiología
14.
Nat Genet ; 46(11): 1245-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25282101

RESUMEN

The pacemaking activity of specialized tissues in the heart and gut results in lifelong rhythmic contractions. Here we describe a new syndrome characterized by Chronic Atrial and Intestinal Dysrhythmia, termed CAID syndrome, in 16 French Canadians and 1 Swede. We show that a single shared homozygous founder mutation in SGOL1, a component of the cohesin complex, causes CAID syndrome. Cultured dermal fibroblasts from affected individuals showed accelerated cell cycle progression, a higher rate of senescence and enhanced activation of TGF-ß signaling. Karyotypes showed the typical railroad appearance of a centromeric cohesion defect. Tissues derived from affected individuals displayed pathological changes in both the enteric nervous system and smooth muscle. Morpholino-induced knockdown of sgol1 in zebrafish recapitulated the abnormalities seen in humans with CAID syndrome. Our findings identify CAID syndrome as a novel generalized dysrhythmia, suggesting a new role for SGOL1 and the cohesin complex in mediating the integrity of human cardiac and gut rhythm.


Asunto(s)
Anomalías Múltiples/genética , Arritmias Cardíacas/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Enfermedades Intestinales/genética , Contracción Muscular/fisiología , Transducción de Señal/genética , Animales , Arritmias Cardíacas/patología , Ciclo Celular/genética , Sistema Nervioso Entérico/patología , Fibroblastos , Efecto Fundador , Tracto Gastrointestinal/fisiopatología , Técnicas de Silenciamiento del Gen , Humanos , Enfermedades Intestinales/fisiopatología , Cariotipificación , Contracción Muscular/genética , Músculo Liso Vascular/patología , Mutación/genética , Quebec , Síndrome , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra , Cohesinas
15.
Eur J Hum Genet ; 22(6): 814-21, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24129432

RESUMEN

In genetics the ability to accurately describe the familial relationships among a group of individuals can be very useful. Recent statistical tools succeeded in assessing the degree of relatedness up to 6-7 generations with good power using dense genome-wide single-nucleotide polymorphism data to estimate the extent of identity-by-descent (IBD) sharing. It is therefore important to describe genome-wide patterns of IBD sharing for more remote and complex relatedness between individuals, such as that observed in a founder population like Quebec, Canada. Taking advantage of the extended genealogical records of the French Canadian founder population, we first compared different tools to identify regions of IBD in order to best describe genome-wide IBD sharing and its correlation with genealogical characteristics. Results showed that the extent of IBD sharing identified with FastIBD correlates best with relatedness measured using genealogical data. Total length of IBD sharing explained 85% of the genealogical kinship's variance. In addition, we observed significantly higher sharing in pairs of individuals with at least one inbred ancestor compared with those without any. Furthermore, patterns of IBD sharing and average sharing were different across regional populations, consistent with the settlement history of Quebec. Our results suggest that, as expected, the complex relatedness present in founder populations is reflected in patterns of IBD sharing. Using these patterns, it is thus possible to gain insight on the types of distant relationships in a sample from a founder population like Quebec.


Asunto(s)
Efecto Fundador , Genética de Población/métodos , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Canadá , Consanguinidad , Francia/etnología , Genealogía y Heráldica , Haplotipos , Humanos
16.
PLoS One ; 8(11): e80710, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24282552

RESUMEN

The genetic diversity within an 11 kb segment of the MTMR8 gene in a sample of 111 sub-Saharan and 49 non-African X chromosomes was investigated to assess the early evolutionary history of sub-Saharan Africans and the out-of-Africa expansion. The analyses revealed a complex genetic structure of the Africans that contributed to the emergence of modern humans. We observed partitioning of two thirds of old lineages among southern, west/central and east African populations indicating ancient population stratification predating the out of Africa migration. Age estimates of these lineages, older than coalescence times of uniparentally inherited markers, raise the question whether contemporary humans originated from a single population or as an amalgamation of different populations separated by years of independent evolution, thus suggesting a greater antiquity of our species than generally assumed. While the oldest sub-Saharan lineages, ~500 thousand years, are found among Khoe-San from southern-Africa, a distinct haplotype found among Biaka is likely due to admixture from an even older population. An East African population that gave rise to non-Africans underwent a selective sweep affecting the subcentromeric region where MTMR8 is located. This and similar sweeps in four other regions of the X chromosome, documented in the literature, effectively reduced genetic diversity of non-African chromosomes and therefore may have exacerbated the effect of the demographic bottleneck usually ascribed to the out of Africa migration. Our data is suggestive, however, that a bottleneck, occurred in Africa before range expansion.


Asunto(s)
Cromosomas Humanos X , Evolución Molecular , Ligamiento Genético , Variación Genética , Genética de Población , África del Sur del Sahara , Haplotipos , Humanos , Reacción en Cadena de la Polimerasa , Polimorfismo Genético
17.
PLoS One ; 8(6): e65507, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776491

RESUMEN

For years, studies of founder populations and genetic isolates represented the mainstream of genetic mapping in the effort to target genetic defects causing Mendelian disorders. The genetic homogeneity of such populations as well as relatively homogeneous environmental exposures were also seen as primary advantages in studies of genetic susceptibility loci that underlie complex diseases. European colonization of the St-Lawrence Valley by a small number of settlers, mainly from France, resulted in a founder effect reflected by the appearance of a number of population-specific disease-causing mutations in Quebec. The purported genetic homogeneity of this population was recently challenged by genealogical and genetic analyses. We studied one of the contributing factors to genetic heterogeneity, early Native American admixture that was never investigated in this population before. Consistent admixture estimates, in the order of one per cent, were obtained from genome-wide autosomal data using the ADMIXTURE and HAPMIX software, as well as with the fastIBD software evaluating the degree of the identity-by-descent between Quebec individuals and Native American populations. These genomic results correlated well with the genealogical estimates. Correlations are imperfect most likely because of incomplete records of Native founders' origin in genealogical data. Although the overall degree of admixture is modest, it contributed to the enrichment of the population diversity and to its demographic stratification. Because admixture greatly varies among regions of Quebec and among individuals, it could have significantly affected the homogeneity of the population, which is of importance in mapping studies, especially when rare genetic susceptibility variants are in play.


Asunto(s)
Variación Genética , Genética de Población , Indígenas Norteamericanos/genética , Población Blanca/genética , Efecto Fundador , Proyecto Mapa de Haplotipos , Humanos , Desequilibrio de Ligamiento , Quebec
18.
Nature ; 488(7411): 370-4, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22801491

RESUMEN

The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved. One contentious issue is whether the settlement occurred by means of a single migration or multiple streams of migration from Siberia. The pattern of dispersals within the Americas is also poorly understood. To address these questions at a higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. Here we show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call 'First American'. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan speakers on both sides of the Panama isthmus, who have ancestry from both North and South America.


Asunto(s)
Emigración e Inmigración/historia , Indígenas Norteamericanos/genética , Indígenas Norteamericanos/historia , Filogenia , Américas , Asia , Análisis por Conglomerados , Emigración e Inmigración/estadística & datos numéricos , Flujo Génico , Genética de Población , Historia Antigua , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple/genética , Siberia
19.
Science ; 334(6059): 1148-50, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22052972

RESUMEN

Since their origin, human populations have colonized the whole planet, but the demographic processes governing range expansions are mostly unknown. We analyzed the genealogy of more than one million individuals resulting from a range expansion in Quebec between 1686 and 1960 and reconstructed the spatial dynamics of the expansion. We find that a majority of the present Saguenay Lac-Saint-Jean population can be traced back to ancestors having lived directly on or close to the wave front. Ancestors located on the front contributed significantly more to the current gene pool than those from the range core, likely due to a 20% larger effective fertility of women on the wave front. This fitness component is heritable on the wave front and not in the core, implying that this life-history trait evolves during range expansions.


Asunto(s)
Demografía , Pool de Genes , Aptitud Genética , Linaje , Dinámica Poblacional , Selección Genética , Emigración e Inmigración , Composición Familiar , Femenino , Fertilidad , Genes , Humanos , Masculino , Matrimonio , Quebec , Sistema de Registros , Reproducción
20.
Mol Biol Evol ; 28(7): 1957-62, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21266489

RESUMEN

Recent work on the Neandertal genome has raised the possibility of admixture between Neandertals and the expanding population of Homo sapiens who left Africa between 80 and 50 Kya (thousand years ago) to colonize the rest of the world. Here, we provide evidence of a notable presence (9% overall) of a Neandertal-derived X chromosome segment among all contemporary human populations outside Africa. Our analysis of 6,092 X-chromosomes from all inhabited continents supports earlier contentions that a mosaic of lineages of different time depths and different geographic provenance could have contributed to the genetic constitution of modern humans. It indicates a very early admixture between expanding African migrants and Neandertals prior to or very early on the route of the out-of-Africa expansion that led to the successful colonization of the planet.


Asunto(s)
Evolución Molecular , Genes Ligados a X , Variación Genética , Hominidae/genética , Grupos Raciales/genética , África , Animales , Secuencia de Bases , Emigración e Inmigración , Frecuencia de los Genes , Haplotipos , Humanos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...